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1. Results and Accomplishments

As indicated in our previous reports, we conducted research on an understanding of large scale climate
drivers of extreme floods. In this context, our research focused on:

a) An evaluation of the role of tropical moisture exports and atmospheric circulation in
determining extreme precipitation and floods

b) A statistical decomposition of SST and SLP fields using correlation networks and its influence on
extreme precipitation

c) An analysis of the space-time inter-annual variability of extreme precipitation (HADEX) and
extreme streamflow (USGS HCDN sites)

d) A comparison of the HADEX extreme precipitation and CMIP5 retrospective and future
projections

2. Highlights of Accomplishments:
The project focused on identifying the atmospheric moisture transport and precipitation
mechanisms associated with extreme floods in the US and elsewhere and understanding the
associated dynamics with a view to prediction of such conditions. This has been the single
largest contribution of the project, and we have focused on identifying the role of tropical
moisture exports and modeling them for 4 locations. The work establishes the basis for
linking climate to synoptic circulation to extreme precipitation and hence to floods.
In the first two papers listed below, we focused on the largest floods in the Ohio River basin
and identified that their atmospheric causes were coherent across events, and corresponded to
a specific dipole pattern that leads to a wavetrain of moisture and precipitation into the basin
every 4 to 7 days in the March-May period. Teleconnections with the Pacific and Atlantic
Oceans were identified at different time scales, and lead times. A parallel analysis
demonstrated that similar atmospheric circulation features govern the extreme and persistent
floods in the UK.
The third paper analyzed a particular extreme flood in France and we were able to identify
the tropical moisture exports associated with this flood and other regional precipitation
extremes. A synoptic circulation mode that influences such events in the region was
identified from a PCA of mid-latitude circulation fields and was shown to provide significant
out-of-sample prediction skill for the day by day sequence of extreme precipitation in 1995
that corresponded to the extreme flood event.
The fourth paper establishes the climatology of tropical moisture exports and sources for the
North East USA, as well as the associated seasonal circulation mechanisms and their



modulation by known climatic patterns. This work is being extended into a formal Bayesian
prediction model.

The seventh paper is most recent, and it pursues an analysis of the tropical moisture exports
into N. California and their use for regional prediction of extreme precipitation frequency
across 19 sites. Significant skill for out of sample predictions in space and time is
demonstrated, provided a basis for how a multi-stage model for climate and precipitation for
downscaling climate change or seasonal scenarios could be developed.

In paper 5, we focused on an identification of the potential moisture source teleconnections
for extreme precipitation across the world. A correlation network was identified for SST and
SLP and its utility in prediction of extreme precipitation over the next 30 days was
demonstrated in a cross validated setting.

Finally, in paper 6 we explore the inter-annual and longer frequency structure in extreme
precipitation and floods over the continental United States using Wavelet and Clustering
methods, and identify groupings of regions that share common space-time-frequency
structure in the occurrence of extreme precipitation and floods. These provide a basis for
regionalization by putative mechanisms as associated with the inter-annual and decadal
structure.

In summary, the project contributed to a mechanistic understanding and prediction of
extreme precipitation and floods, using empirical analyses performed on observed and
modeled atmospheric circulation patterns.
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Abstract

Warm, moist, and longitudinally confined tropical air masses are being linked to some of
the most extreme precipitation and flooding events in the mid-latitudes. The inter-annual
frequency and intensity of such atmospheric rivers (ARs), or tropical moisture exports
(TMEs), are connected to the risk of extreme precipitation events in areas where moisture
convergence occurs. This study presents a non-stationary, regional frequency analysis of
precipitation extremes in Northern California that is conditioned on the inter-annual
variability of TMEs entering the region. Parameters of a multi-site peaks-over-threshold
model are allowed to vary conditional on the integrated moisture delivery from TMEs over
the Western U.S. Parameters are also related to time-invariant, local characteristics to
facilitate regionalization to ungaged sites. The model is developed and calibrated in a
hierarchical Bayesian framework to support partial pooling and enhance regionalization
skill. The model is cross-validated along with two alternative, increasingly parsimonious
formulations to assess the additional skill provided by the covariates. Climate diagnostics
are also used to better understand the instances where TMEs fail to explain variations in
rainfall extremes to provide a path forward for further model improvement. The modeling
structure is designed to link seasonal forecasting and long-term projections of TMEs
directly to regional models of extremes used for risk estimation.

1. Introduction

The challenges that extreme hydroclimate events pose to sustainable development around
the world are both severe and growing. Recent floods in the United States [Dirmeyer and
Kinter, 2010], Pakistan [Houze et al., 2011], China [Zong and Chen, 2000; Lin et al., 2010],
Europe [Ulbrich et al, 2003; van den Honert and McAneney, 2011], United Kingdom
[Marsh, 2004; Slingo et al, 2014], and Thailand [Komori et al, 2012] have led to an
alarming rise in humanitarian crises and societal costs [Munich Re, 2012], underscoring the
need to better understand the nonstationary characteristics of these phenomena. The cost-
effective design of reliable engineering solutions and financial mechanisms (e.g., insurance
products) over annual to decadal planning horizons depends on this scientific
understanding.



Nonstationarity in hydroclimate extremes has emerged as a prevailing issue in water
resources engineering and hydrology over the past two decades [Olsen et al., 1999;
Koutsoyiannis, 2006; Khaliq et al., 2006; Villarini et al.,, 2009]. Large-scale oscillations in
the climate system (e.g., ENSO, PDO) have been shown to modulate the frequency
distributions of extreme hydroclimate events around the world, challenging the statistical
assumptions underlying classical extreme value frequency analysis [Jain and Lall, 2000;
Kwon et al,, 2009; Alexander et al., 2009; Lima and Lall, 2010; Ward et al., 2010]. This has
important implications for operational water management decisions related to the
clustering of extreme events, and also for under/design or over/design of flood control
projects if the impact of low frequency climate oscillations is not analyzed [Jain and Lall,
2001]. Projections of future climate change using numerical modeling of the coupled ocean-
atmosphere system also suggest that extreme events will worsen in the future due to
increased greenhouse gas concentrations [Milly et al, 2002; Hirabayashi et al, 2013].
Support for this argument is often driven by thermodynamic considerations, i.e., an
increase in the water holding capacity of the atmosphere [Lenderink, and van Meijgaard,
2008; Muller et al,, 2011; Romps, 2011; Berg et al,, 2013]. Unfortunately, due to model
structural errors, parameterization uncertainty, and the challenges of resolving sub-grid
precipitation processes, model integrations tend to exhibit substantial bias in the
spatiotemporal distribution of regional precipitation, particularly for tail events, impeding
a straightforward inference on future extreme floods due to changes in atmospheric
circulation [Karamperidou et al., 2012; Fischer et al., 2013].

When trends are present in the instrumental record, statistical methods for nonstationary
frequency analysis are available [Coles, 2001; Khaliq et al., 2006]. However, it is difficult to
support the extrapolation of trends for inferences of future recurrence intervals
[Koutsoyiannis and Montanari, 2014]. Recently, Merz et al, [2014] argue that
nonstationary statistical techniques need to be complemented by an understanding of the
casual mechanisms and dominant climatic processes that modulate extreme event risk.
Such an understanding is indeed necessary to develop a consistent analytical framework to
explain and predict oscillations and trends in extremes using both historic observations
and long-term climate projections from atmosphere-ocean general circulation models
(AOGCMs). This approach may be particularly relevant when trying to estimate future
extreme event risk at ungaged sites that require model regionalization from gaged
locations [Lima and Lall, 2010]. Consequently, examining the causal chain of events that
leads to extreme floods is important for an understanding of the associated
nonstationarity. This is a goal of the current paper.

In the midlatitudes, organized and persistent moisture transport sourced from the tropical
oceans has been identified as one climate mechanism that can significantly influence the
generation of hydroclimatic extremes. This class of atmospheric phenomena is referred to
as tropical moisture exports (TMEs), or atmospheric rivers (ARs) [Zhu and Newell, 1994]
when taking the form of planetary-scale filaments of atmospheric moisture. ARs have been
estimated to account for almost 90% of global meridional moisture conveyance [Zhu and
Newell, 1998] and have been shown to exhibit substantial inter-annual and decadal
variability in certain locations [Dettinger and Cayan, 2014], at least in the recent past [St.
George and Ault, 2011]. Knippertz and Wernli [2010] established a TME climatology for the
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northern hemisphere, identifying four activity centers, including: 1) the Pineapple Express
(PE) that connects tropical moisture near Hawaii to the western coast of North America; 2)
the West Pacific (WP) TME that influences extreme rainfall in East Asia; 3) a moisture
transport maximum over the Great Plains (GP) affecting the central U.S.; and 4) the Gulf
Stream (GS) TME located near the western inflow portion of North Atlantic storm tracks.
TME climatology was also recently extended to the southern hemisphere [Knippertz et al,,
2012].

A number of hydroclimatic analyses have linked ARs and TMEs to large-scale rainfall and
flooding events in the Western U.S. (PE) [Neiman et al., 2008; Dettinger et al., 2011; Neiman
et al., 2011; Dettinger, 2013; Ralph et al.,, 2013], Central and Eastern U.S. [Dirmeyer and
Kinter, 2009; Dirmeyer and Kinter, 2010; Moore et al., 2012; Nakamura et al., 2012; Lavers
and Villarini, 2013; Lackmann, 2013] (GP), United Kingdom [Lavers et al., 2011] (GS), and
Western Europe [Lu et al., 2013] (GS). The flood events associated with these features are
often the most extreme in the instrumental record and produce the greatest socioeconomic
damage. To date, however, the authors are unaware of any work that integrates the
temporal behavior of TME dynamics into extreme event frequency modeling of
teleconnected midlatitude regions, despite their importance in large-scale flood genesis.

In the context of this research gap, this paper seeks to study the following questions using a
case study of precipitation extremes in Northern California:

1. How does annually/seasonally integrated moisture transport related to TMEs
influence both the frequency and magnitude of extreme rainfall events over the
region?

2. Can the inter-annual variability of an annualized TME index of regional moisture
delivery help improve extreme rainfall frequency models at gaged sites and
regionalization of these models to ungaged sites?

3. When does such an annual TME index fail to explain variations in extreme
rainfall, and do these discrepancies originate from inadequacies in the index or from
other prevailing extra-tropical atmospheric circulation during these periods?

These questions are explored in the context of a multi-site peaks-over-threshold (POT)
model of precipitation extremes. The primary goal of this work is to establish a direct link
between an emerging process-based knowledge of organized, large-scale climate dynamics
linked to widespread flooding in the midlatitudes and extreme event frequency modeling
often used for risk estimation. The modeling framework is proposed as an approach that
can support both seasonal predictions and long-term projections of future extreme event
risk based on developing knowledge of these mid-latitude causal mechanisms.

The remainder of the paper is organized as follows. Section 2 outlines the data used in the
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study, while methods are presented in Section 3. Section 4 presents the results of the
analysis, and the paper concludes in Section 5 with a discussion of potential avenues for
future work.

2. Data

The climate data used in this analysis are taken from the 6-hourly ERA-Interim global
atmospheric reanalysis dataset with 3-hourly forecasts of surface parameters [Dee et al,,
2011]. These data have a spectral T255 horizontal resolution (0.75°, or ~80km), with a
total of 39 grid cells covering the study domain in Northern California (see Figure 1, inset).
Cumulative total precipitation estimates are gathered for times 00:00 UTC and 12:00 UTC
at the last 3-hourly forecast time step and are summed to estimate the cumulative
precipitation for each day. The data are gathered over the period from November 1, 1979
to March 31, 2013 and are restricted only to the winter months (November-March), as this
season contains essentially all extreme precipitation events in Northern California. A total
of 34 winter seasons are available. Precipitation from the ERA-Interim reanalysis is chosen
over other gridded precipitation products based on station data to be consistent with the
TME data which is also derived from the ERA-Interim reanalysis.

For each of the 39 grid cells included in the analysis, a series of time-invariant
characteristics are also gathered, including the latitude and longitude of each grid cell, as
well as the mean and standard deviation of orography, both measured in units of m?/s?.

Finally, data on TMEs over the region are derived from the global climatology presented in
Knippertz et al. [2012], also based on the ERA-Interim reanalysis dataset. The TME
identification procedure is presented in detail in Knippertz and Wernli [2010] and is only
briefly summarized here. Using the software package Lagrangian Analysis Tool
(LAGRANTO) [Wernli and Davies, 1997], trajectories of TMEs are identified from vectors of
three-dimensional wind fields. First, one-day forward trajectories are calculated from
every 100 km x 100 km x 30 hPa box between 0°N and 20°N (i.e., the northern tropics) and
within the range of 1000 to 490 hPa on a particular day at 00:00 UTC. The vertical range is
limited to 490 hPa because approximately 90% of all atmospheric water vapor is contained
below this level. If tracks cross the 20°N latitude threshold on day 1, they are followed for
the next 6 days. Those tracks that maintain at least a 100 g kg’ m s1 water vapor flux
beyond 35°N sometime within the 7 day period are classified as a TME track. This
classification scheme promotes the retention of fast moving air parcels to ensure that the
parcels maintain their tropical characteristics as they move poleward into the subtropics.
Tracks are gathered for each day between November 1, 1979 and March 31, 2013 and are
identified by their date of birth in the tropics. After the tracks are identified, a variety of
meteorological parameter fields are then interpolated to the position of the trajectory at
each 6-hourly time step, for a total of 29 time steps within the 7-day period. Of interest in
this study, specific humidity is interpolated to enable the tracking of water flux along each
TME trajectory from its source in the tropics to its terminus in the extra-tropics.
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Figure 1. TME tracks passing over California on January 1, 1997. All tracks pass through the
domain delimited by the red box. Colors indicate the change in specific humidity along the
TME trajectory (Ag kg'1), with negative values indicating a release of water. Inset: The 39
reanalysis grid cells included in the analysis. Blue circles (red asterisks) indicate sites
included (excluded) during model fitting.
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3. Methods

To address our research questions, we characterize the relationship between the frequency
and magnitude of extreme precipitation events in Northern California with an index of
annual TME moisture delivery over the region. We develop a regional Peak over
Thresholds (POT) model of precipitation extremes that conditions the frequency and
magnitude of exceedances on the annual TME index. This model also uses site-specific
characteristics to regionalize model parameters to ungaged sites. Two nested, increasingly
parsimonious models are also developed for comparison to determine the additional
benefit provided by the covariates for both calibration and validation (i.e., “ungaged”) sites.
Model results are then evaluated to assess in which years the TME information is a useful
contributor or not for assessing extreme precipitation risk. For those years where skill is
lowest/highest, an analysis of the dominant features of hemispheric atmospheric
circulation and regional precipitation are explored.



3.1. Partial duration series and TME index

To analyze extreme precipitation in Northern California, a POT modeling framework is
proposed for the number of occurrences Y;; and magnitude X;; of precipitation events that
exceed some threshold p;, where i indexes the precipitation site, and t=1...T is an index of
each winter season from 1979 to 2013. All analyses are conducted on a random subset of
19 precipitation sites selected from the original set of 39, leaving 20 sites for model
validation (see Figure 1 inset). Partial duration series are developed for the 19 calibration
sites by first selecting the threshold p;, and then calculating the number of threshold
exceedances Y; . in each winter season. The magnitude of each exceedance over y; in year t
is denoted X/;=P, — u;, where k=1,..Ki, ¥;, and P/, is the precipitation value on the day of
the kth exceedance for year t and site i, and Kj; is the number of exceedances of the
threshold in year t at site i.

To select the threshold p;, a series of candidate levels corresponding to precipitation
percentiles (90th, 91st, 92nd | 99th) are first calculated and superimposed on mean residual
life plots for each calibration site. These plots display the mean excess (i.e., the mean of the
precipitation excesses over some threshold pu, less the threshold) against a range of
different threshold values. An appropriate threshold is identified as the value beyond
which the mean excesses are linear in y [Coles, 2001]. The mean residual life plots for all
sites are visually examined with the percentile values superimposed, and the percentile for
which the threshold most consistently passes the linearity criterion for all 19 sites, is
selected as the basis for y;. Using this method, all sites have approximately the same
number of exceedances. To avoid double counting precipitation extremes from the same
storm event, precipitation exceedances with less than 3 days of separation are considered a
single event, and the maximum exceedance during that time period is retained as the
precipitation peak.

An index is created for the total wintertime moisture released from TMEs over Northern
California. First, all tracks from the northern hemisphere TME climatology database that
pass over a domain between 36.5-43°N and 125-119°W are identified (see red box in
Figure 1). For each track, the change in moisture is calculated as AQ; = @; — Q;_, where
j€{0,6,12,...,168 hours} indexes the time along the trajectory when that track is located
over the domain and Q is the specific humidity in g/kg. If AQ; is negative, this indicates that
moisture was released at time j along the trajectory, while a positive value indicates that
moisture was added from evaporation. Given j and the date of birth of a track, each AQ; can
be associated with a particular day in the record. All AQ values are summed across all
tracks for each day of winter between 1979 and 2013 to develop a single, daily time series
of AQ for the region. The daily time series can then be summed for each winter season to
create a single annual index, TME,. This index represents the cumulative moisture delivery
from TMEs averaged over the entire domain, rather than for a particular location, and
therefore can be used as a covariate for all POT models across precipitation sites. We note
that while the regional TME index likely averages out important spatial variations in TME
moisture delivery, which is a clear shortcoming, the application of a single TME covariate in
all POT models will likely lead to more robust relationships that are less sensitive to spatial
biases in the TME database.



3.2. POT model development

The number of occurrences Y;, and magnitude X{ft of precipitation exceedances are
investigated using three nested models (M0, M1, M2) with increasing complexity that
accounts for additional information provided by site-specific characteristics and the inter-
annual variability of TMEs. The number of peak occurrences Y;, for a particular site are
often assumed to follow a Poisson distribution [Shane and Lynn, 1964], while the
magnitude of exceedances Xi'ft are modeled using a generalized Pareto distribution (GPD)
or exponential distribution (a GPD with zero shape) [Pickands, 1975]. Hereafter we
continue with the simpler exponential model, although the general approach is easily
extendable to the GPD. The density functions of the Poisson and exponential distributions
are given as:

—li(A,W)

f(Yieldi A W) = 2,(A, W)Yie = Yi! (1)
_o.(0 W xk

£(XK,16,0,W) = 6,(0, W)e 0:1@WXi; @)

The Poisson parameters A; and exponential parameters 6; are each assumed to be random
variables with distributions conditional on a vector of hyperparameters A and O,
respectively, as well as covariates W. The hyperparameters are assigned a prior
distribution P(A, ®), and the joint posterior distribution of all model parameters across
sites can then be described using Bayes Theorem:

P(2,6,A,01Y, X, W) o 1L, (P2, 6,18, 0, W) TTE-(f (Vieldi, A, W) Tliear,, (X116, 0,W)) ) P(A, ©]W)

(3)

The hierarchical Bayesian structure presented in equation 3 allows partial pooling of
information across the N calibration sites by having both 6; and 4; distributed according to
a regional parent distribution P(4;6;|A,0,W). The three models MO, M1, and M2

increasingly allow for additional pooling in the hierarchy by adding structure to
P()liieilAl 0; W).

The simplest model, M0, presents a basic hierarchical Bayesian structure for A; and 6;,
where the parameters from each site i are assumed to be drawn from lognormal regional
parent distributions:

ai~N(Ma' Ta) (4)
yi~N(,uyr Ty) (5)
A; = exp(a;); 0; = exp(yy) (6)

Given the exponential link functions in equation 6, the mean hyperparameters u, and u,
are given vague uniform distributions between -10 and 10, while the precision
hyperparameters 7, and 7, are both given weakly informative gamma distributions with
shape and rate equal to 0.001. Here, we assume that the frequency and intensity of
extremes across sites are neither identically distributed nor are they completely unrelated
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to one another. Instead, the distributions across sites are exchangeable, such that they can
vary from site to site with some structure described by the distributions N(u,,t,) and
N (,uy, Ty), but this variation is not predictable.

The intermediate model, M1, adds an additional level of complexity to MO by allowing the
hyperparameters u, and p,to vary by site depending on local characteristics of each
precipitation grid cell, specifically the latitude, longitude, average elevation, and standard
deviation of elevation. These physical characteristics are time-invariant and determine how
position relative to storm tracks and orographic lift alter the extreme precipitation
characteristics at a site. Since these regressors are highly correlated, their information is
summarized using the first R principal components that explain the majority of variance in
the original dataset. The row vector z; of length R contains the scores for site i. The
parameters 8;and 4; are then allowed to vary depending on these covariates by making the
mean values u, and y, linear functions of z;:

Hai = B, +ziBp, (7)
Uyi = ﬁﬁy + Ziﬁﬁy (8)

All regression coefficients are assigned vague uniform priors between -10 and 10.

Finally, the most complex model, M2, allows the parameters 6;and A; to vary temporally
based on the inter-annual variability of annually integrated TME moisture deliveries over
each winter season, in addition to site-specific characteristics:

Aie = exp(a; + BIMEXTME,) 9)
i = exp(yi + ﬁg,’}”EXTMEt) (10)

Here, the parameters «; and y; follow the same conditional distributions as in M1, but now

the Poisson and exponential models can also vary from year to year depending on the TME
index through coefficients g} ;""and B}'*. The average frequency of extremes increases as
the coefficient ﬁ,{ ME increases, while the converse is true for the magnitude of extremes
and B 'F. Because different sites may be influenced differently by TMEs, these coefficients

are allowed to vary depending on local characteristics:

/{IiWENN(ﬂBIME + Zin;}L‘ME; TB)TME) (11)
ﬂg,IyE~N(7TBgME + Zi”;gME; Tﬁg‘ME) (12)

Here, ﬂgTME;T[gTME are scalars and ﬂllgms,ﬂ[lgrm are column vectors of length R, all with
A ] A ]

uniform priors between -10 and 10, while the precision parameters TgTME, TpTME are again

given weakly informative gamma distributions with shape and rate equal to 0.001.
Equations 9-12 allow the Poisson and exponential parameters for each site to vary through
time as a function of TMEs, but this relationship is assumed to be different across sites and
this difference is predictable based on the properties of each site. Table 1 provides a
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summary of the key similarities and differences of the three nested models, M0, M1, and
M2.

The fitted POT model in M2 can be used for non-stationary extreme precipitation
probability estimation. The g-year exceedance event, P, for the it site in year t can be

calculated as [Davison and Smith, 1990]:

a_ p-1 -1
Fir = Fep ((1 /(Ai,t(zi,TMEt)xq)>

0,¢(zi, TMEt)) (13)

where 4;.(z;, TME;) and 0;,(z;, TME,) are the Poisson and exponential parameters
conditional on covariates, as appropriate, and F,;, is the quantile function of the
exponential distribution.

For each of M0, M1, and M2, the POT model can be regionalized to ungaged sites after being
fit to calibration sites using posterior sampling. For M0, the joint distribution of (4;+, 8;-) for
a new site i" can be simulated by drawing samples of {,ua, Uy Ta,Ty} from their joint
posterior distribution, and then sampling values of a;+ and y;+ from the normal
distributions in equations 4 and 5 and transforming to 4;+ and 6;+ with the exponential link
function. Posterior predictive samples of occurrences Y;: .+ and magnitude X;: .+ for a year t*
can then be drawn from the Poisson and exponential models using the simulations of 4;:
and 6;-. A similar process can be followed for M1 and M2 using posterior samples from the
full set of hyperparameters conditional on particular values for the predictors z;+ and
TME,-, as appropriate. For all models, the threshold y;+ is estimated at a new location
through a regression of threshold values at calibration sites on PC scores.

Table 1. Key similarities and differences between the three nested models M0, M1, and M2.

| | MO | M1 | M2 |
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Time- @i ~N (4o o) @i~N (e Ta) @;~N(tair Ta)
invariant
component Hq constant = f(z) = f(z)
across sites
Poisson variant AL T 0 AL T 0 (f (zy), 7 TME)
component
Sampling 1 TME
=e a;+ B XTME
distribution Lt Xp( f)
of data Y;¢ ~ Posswn(/ll,t)
Time- Vi~ Ny, 7y )| vi~N (07 ) Vi~N (i Ty)
invariant
component | Hr constant =f(z) = f(z1)
across sites
Exponentia Time- TME TME _ TuE
1 variant 0. 0. N (f ()T TME)
component
Sampling 0, = exp(y; + BAYEXTME,)
distribution Xl,t ~ POSS’lOn(Ql,t), k = 1’ . Yi,t
of data

3.3. Model fitting and evaluation

All of the Bayesian models described above are coded in the STAN probabilistic coding
language for full Bayesian inference. Posterior distributions are evaluated using the
Hamiltonian Monte Carlo (HMC) sampling method [Duane et al.,, 1987]. The HMC method
utilizes efficient jumping rules that help to suppress local random walk behavior that can
slow convergence. Four chains are run for all parameters with over-dispersed initial values
using 5,000 burn-in simulations and 5,000 iterations afterwards. Convergence is assessed
based on chain mixing using the Gelman and Rubin convergence criterion [Gelman and
Rubin, 1992].

Models M0, M1, and M2 are all fit in a leave-one-out cross-validation framework where one
year is left out of the analysis and the model is refit using the remaining years of data. The
fitted model is then used to forecast the distribution of extreme value data for the excluded
year. In this way, the models can be cross-validated not only against the gages that were
completely left out of the model fitting process, but also against those sites used for
calibration. Furthermore, the leave-one-out framework is applied when testing against the
validation gages, so that the fitted models have the dual challenge of predicting the
distribution of extremes for both a year and location not included in the fitting process.
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Two sets of statistical tests are used to compare the probabilistic estimates provided by
models MO, M1, and M2 under cross-validation. The first approach is based on a ranked
probabilistic skill score (RPSS), derived from the ranked probability score (RPS). In the
discrete case, the RPS is the squared deviation between the cumulative distribution
function (CDF) of a probabilistic forecast and the CDF of the corresponding observation
over a preselected number of forecast categories [Weigel et al, 2007]. The RPS for the
Poisson distribution fit in each year is calculated using J=6 categories for the number of
extreme precipitation events in a given year (j = 0,1,2,3,4,>5):

2
RPSSM = ¥, (FGIEM.) = F(jlYie)) (14)

Here, F; is the forecasted Poisson CDF under model M, F, is the observed CDF, which is
equivalent to a step function from 0 to 1 at the observed value Y; ;+, t" is the excluded year in
the leave-one-out framework, and -t* represents the remaining years used during the

model fit. The parameter Afi\”t is a simulated value of the Poisson parameter for site i from

its posterior distribution fit without data from year t* under model M, with s =1, ..., S
denoting the number of simulations. The RPSS can then be used to compare the RPS for any
two models, for instance, M1 and M2:

Sheoy5 Eaoy RPSTH?

SHT (15)

T 1yS
2t*=1§25=1RP5i_t*

RPSSMM? =1

Here, the RPSS between models M1 and M2 for the ith site averages over both the posterior
simulations of the RPS for each model and all years of data. If RPSSiMl’M2 > 0, this indicates
that on average, M2 outperforms M1, while the converse is true for a value less than 0.

When the probabilistic forecast is continuous rather than discrete, as for the exponential
model, the RPSS can still be calculated for two models by deriving a continuous form of the
RPS (i.e., the CRPS) [Hersbach, 2000]. For the exponential model, the CRPS is given as
[Friederichs and Thorarinsdottir, 2012]:

1 1
CRPS;M, = Xl — = (2R, (xf1657.) - ) (16)
i,—t*

Here, Xi’ft* is the kth exceedance peak in year t* for site i, Fy is the forecasted exponential

CDF under model M, and Bls_lvi is a simulated value of the exponential parameter for site i

from its posterior distribution. The continuous RPSS (CRPSS) can then be calculated for any
two models according to equation 15.

In addition to the CRPSS, a probability integral transform procedure [Laio and Tamea,
2007] is used to further evaluate the adequacy of the exponential model fit. In brief, the
procedure tests whether probabilistic predictions for a continuous random variable are
adequate in a statistical sense. To conduct the test, the cumulative distribution function of
the estimated exponential model for year t* under model M is evaluated with respect to the
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observed exceedance magnitudes, posM — P(Xikt* in”) On a posterior mean basis, the

it t
probabilistic predictions are suitable for site i under model M if the vf;_s*’M

across posterior simulations s € § are distributed uniformly between 0 and 1 across all
years. Uniformity is assessed using a Kolmogorov-Smirnov test.

values averaged

3.4. Diagnostics on model error

For those years when other causal mechanisms besides TMEs are responsible for extreme
precipitation events in Northern California, the M2 model may incorrectly underestimate
risk. Conversely, M2 may overestimate risk if TME tracks release small or moderate
amounts of moisture over the region on many days in the region, thus increasing the TME
index, but corresponding precipitation extremes do not occur. To better diagnose these
issues and provide an avenue for further model improvement, atmospheric circulation and
the distribution of daily AQ values are examined during times of poor model performance.

To identify those years where M2 is least accurate, the posterior means of RP.S'l.S;f*V’2 and

CRPSL.S,'t’f'JZc across all simulations s € S are calculated for each year and site. Both RPS and
CRPS values are then averaged across sites for each year, producing two regional, annual
indices that measure M2 performance for the occurrence and magnitude of extremes,
respectively. Similar annual indices are also produced for M1. The ratio of the frequency
index from M2 and M1 is then calculated for each year. Larger ratios in a given year
indicate that M1 predicted the distribution of extreme event occurrences better than M2
for that year, while smaller values suggest the opposite. We record the years in which the 6
largest values occur, i.e., the worst M2 performance compared to M1. A similar analysis is
conducted for the region magnitude index from M2 and M1. These years are split into two
sets based on whether the frequency distribution was over-predicted or under-predicted,
which is determined by comparing the average Poisson and exponential parameters across
sites estimated under M1 and M2 for each year. For years of under-prediction, 500 mb
wind and geopotential height anomalies over the eastern Pacific and Western United States
are composited for dates with extreme rainfall at a minimum of 10 of the 19 calibration
sites. These composites will indicate the dominant modes of circulation besides TMEs that
drive precipitation extremes. For comparison, the same atmospheric fields are also
composited for the dates of major Pineapple Express events in 1982, 1986, 1995, 1997, and
2006, which are all years known to be associated with TME-related floods in California.

For years in which the frequency and magnitude distributions are over-estimated by M2,
we examine the distribution of daily AQ values for all TME tracks. These results are again
contrasted against similar distributions from years with large TME-related extreme events.
By comparing these two sets of distributions, the results of this analysis will help
determine whether the annual TME index over-simplifies certain aspects of daily TME
behavior and consequently misrepresents the link between extreme precipitation events
and daily AQ values.

4. Results

4.1. Partial duration series and TME index
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Mean residual life plots for 4 calibration sites are shown in Figure 2, along with several
precipitation percentiles superimposed. The residual life plots of the remaining 15
calibration sites are similar. For almost all sites, mean excesses are linear in y; if the
threshold is set to the 98t percentile of daily precipitation. This threshold leads to between
77 and 88 exceedance events over the 34 years of record at each site. The final number of
exceedances fluctuates by site depending on the extent to which events were declustered
for that site. With the threshold selected, the number of exceedances Y;; and their

magnitudes X%ft are calculated across all sites. An annual, regional index is then developed
for the number of occurrences by averaging Y;. across all sites for each year. A similar
index is created for the magnitude of exceedances by first normalizing X%ft for each site and
then averaging across sites (Figure 3).
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Figure 2. Mean residual life plots for 4 calibration sites. Several precipitation percentiles
are superimposed as vertical lines, with the 98t percentile highlighted in bold.

An example of TME tracks and their moisture change for the January 1st storm of 1997 was
shown earlier in Figure 1. The TME tracks all originate from the Pacific Ocean near Hawaii,
characteristic of a Pineapple Express event. To summarize the activity of these TME events
over a season, cumulative moisture deliveries from TME tracks for each winter are
integrated into a single, annual index, which is shown along with regional indices for
extreme rainfall occurrence and magnitude in Figure 3. The annual TME index is
significantly correlated at the 0.01 level with both the regional occurrence (Pearson r of
0.76) and magnitude (Pearson r of 0.49) indices. We note that all indices are relatively high
during the winters of 1982, 1986, 1995, 1997, and 2006, which are all years during which
California experienced notable floods. However, there are several years in which the
number (1985, 1993, 1999, 2003) or magnitude (1987, 1990, 2005, 2013) of exceedances
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is large but no corresponding TME peak exists. These discrepancies are discussed further
in Section 4.4.
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Figure 3. Regional indices of the number (a) and magnitude (b) of extreme rainfall events.

The regional TME index is also shown.

Before proceeding with the regional POT model fit, a principal component analysis of site-
specific characteristics (latitude, longitude, mean elevation, and standard deviation of
elevation) is conducted across the calibration sites. Given the topographic orientation of
the Sierra Nevada mountains, the latitude and longitude are both highly correlated with
mean elevation (Pearson r>0.65), while the mean and standard deviation of elevation are
also moderately correlated (Pearson r = 0.33). The first 3 principal components are
retained for further analysis, as they account for 96% of the variance (50%, 25%, and 21%
respectively).

4.2. Posterior distributions for M2

This section focuses on posterior distributions of key parameters in model M2. Since M0
and M1 are nested sub-models of M2, the results from M2 summarize the general patterns
than can be found in the posterior parameter sets across all three models. An inter-model
comparison is presented in section 4.3

We first evaluate the posterior estimates of 8 ;'* and B1'* from M2 that relate the Poisson
and exponential models to the TME index (Figure 4). The results are shown for only one fit
in the leave-one-out cross-validation. Recall that positive (negative) values of g1 ;% (B51*

indicate an increase in the frequency (magnitude) of exceedances. The 90% credible
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intervals at all sites for B{;* and all but one site for B37* exclude zero, indicating a

statistically significant, positive relationship between regional TMEs and both the
frequency and magnitude of extremes across the entire domain. For the northeastern site
where the 90% credible interval of 5%'* includes zero, the 88% credible interval does not.
The absolute magnitudes of B;;'° and B3* exhibit similar spatial gradients across the
domain, with larger (smaller) values in the northeast (southwest).
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Figure 4. Posterior estimates of B1¥£ and BL¥* across calibration sites for one cross-

validation fit (1980 excluded) of M2. The direction of the triangle indicates the sign of the
posterior mean for the coefficient, while the size represents its absolute magnitude.
Triangles are colored blue if the 90% credible interval excludes zero.

The spatial gradients for both B;}'* and Bg1'* suggest that the link between TMEs and the
frequency and magnitude of extremes varies systematically across the domain. This is

confirmed in Figure 5, which shows the median, 5t, and 95t percentiles of n;‘,mg
A
and nllgmg for each of the cross-validation years. These parameters demonstrate the extent
0

to which B;1"* and Bg}'* vary with the PCs. For PC1, the 90% credible interval for BgY*
almost always excludes zero for all cross-validation years, and the same confidence interval
for ,8,{ MEshows a similar, albeit less significant, pattern. No significant relationships emerge
for PC2 and PC3. Given the loadings on PC1, the relationships in Figures 5a,d suggest that
precipitation extremes at inland, high-elevation areas tend to be more sensitive to TME
activity. This is consistent with the notion that orographic lift is needed to initiate
precipitation from TMEs [Dettinger, 2011].
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Figure 5. The median (black) and 90% credible interval (dashed blue) of posterior
distributions for a-c) ”;;;ME and d-f) ”[1351”5 for the fit of M2 in each cross-validation year. A

horizontal, dashed red line is shown at zero.

The spatial distribution of posterior estimates for p,; and p,; is shown in Figure 6. These
parameters represent how the time-invariant component of Poisson and exponential
parameters varies across space. Both parameters tend to exhibit a dipole pattern, with
larger absolute magnitudes in the southwest and northeast and smaller magnitudes in the
center of the domain, although this pattern is more apparent for p, ;. Figure 7d-f shows that
the posterior distribution of Bﬁv, which relates p, ; to the PCs across sites, is significantly
different from zero for all PCs and cross-validation fits. A much less consistent pattern is
found for pg;. This parameter shows no real significant variation with any of the PCs
(Figures 7a-c). Further analysis (not shown) indicates a similar relationship under M1.
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Figure 6. Posterior estimates of p,; and p,,; across calibration sites for one cross-

validation fit (1980 excluded) of M2. The direction of the triangle indicates the sign of the
posterior mean, while the size represents its absolute magnitude. Triangles are colored
blue if the 90% credible interval excludes zero.
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Figure 7. The median (black) and 90% credib.le interval (dashed blue) of ﬁosterior
distributions for a) B;lz,,, and b) B}ly for the fit of M2 in each cross-validation year. A
horizontal, dashed red line is shown at zero.

The observed decadal variability in the TME index leads to decadal variability in the risk of
extremes in Northern California over the historical period. Figure 8 shows the posterior
mean and 95% credible interval for the 100-year storm at one site over the past 34 years,
as conditioned on the TME index under M2. Also shown is a stationary estimate of the 100-

year event, P}0° for that site based on a maximum likelihood fit of the POT model using all

years of data. [t is clear that under the assumptions of M2, the risk of extreme rainfall varies
substantially from year to year in the observed record as compared to a stationary estimate
of extremes. In 1997, the 100-year rainfall event nearly doubles between the posterior
mean under M2 and the stationary estimate.

21



m)
120 140 160
| | |

100
|

Precipitation (m
80
|

60
|

40

| | |

1980 1985 1990 1995 2000 2005 2010
Year

Figure 8. The posterior mean (black) and 95% credible interval (dashed blue) of the 100-

year storm estimate under M2. The horizontal line shows a stationary estimate of the 100-
year event.

4.3. Inter-model comparison between M0, M1, and M2

The RPSS and CRPSS for the Poisson and exponential cross validation fits are shown in
Figure 9. Here, a more complex model (e.g., M2) is always compared against a simpler sub-
model (e.g.,, M1 or MO0). A positive RPSS or CRPSS indicates that the more complex model
performs favorably for out-of-sample predictions at a particular site. Comparisons between
M2 and M1 isolate the additional benefit provided by TME information, while the
comparison between M1 and MO isolates the additional skill provided by including site-
specific information into a time-invariant fit of A; and 6;. The comparison between M2 and
MO reveals the benefit provided by considering all covariates.

Several results emerge from Figure 9. First, for both Poisson and exponential fits, M2
performs the best under cross-validation at both calibration and validation sites. This
outperformance is most prevalent for exceedance occurrences. On average, M2
outperforms M1 by 20% (14%) at calibration (validation) sites, and this outperformance is
consistent across all sites and reaches higher than 25% for a few locations. When
considering exceedance magnitudes, the outperformance is much less, though still
apparent at verification sites. Here, the average outperformance is 0% (1%) at calibration
(validation) sites, with the highest outperformance reaching only 4%. Also, M1 performs
better at 7 out of 19 calibration sites, although not by much. However, M2 does show
improved performance at 14 out of the 20 verification sites. These results suggest that the
addition of TME-based information improves both aspects of the regional POT model,
especially for the frequency of peak occurrences.
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When comparing M1 and MO, a slight decline in performance is seen for the Poisson model
fit under M1. This is somewhat expected given that the Poisson parameter did not
ultimately vary substantially with any covariates, yet M1 still propagates the uncertainty in
those regression parameters forward (see Figure 7a-c). However, there is significant
improvement in the probabilistic forecasts under M1 for exceedance magnitudes,
particularly for validation sites not included in the model fit. Here, the additional
information provided by the PCs improved the fitted exponential model on average by
about 9%, although this value is skewed upward by improvements of 22% and 38% for
two validation sites in the northeast of the domain.

Finally, the comparison of the most complex model (M2) with the baseline model (MO)
shows strong improvement across both Poisson and exponential fits, particularly for the
validation sites. This suggests that a spatiotemporal regionalization of POT models is
substantially improved using both large-scale climate phenomena and local-scale
characteristics.
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Figure 9. RPSS for the Poisson distribution fit (first row) and CRPSS for the exponential
model fit (second row) for different model comparisons. The scores are shown and labeled
for calibration (circles) and validation (asterisks) sites. Positive scores (blue) favor the
more complicated model, while negative scores (red) suggest the additional complexity
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degrades out-of-sample prediction. The mean score across calibration and validation sites
is provided in the header.

Since the fit of exponential distributions across the 3 models is more similar than for the
Poisson distributions, a secondary evaluation is useful. The results of the PIT analysis on
the exponential fit show that all three models have no calibration sites with a p-value less
than 0.05 for the Kolmogorov-Smirnov test of uniformity, but this threshold is crossed for
10, 5, and 4 validation sites under models M0, M1, and M2, respectively. For a p-value
threshold of 0.10, the number of violations under M0, M1, and M2 changes to 1, 1, and O for
the calibration sites and 14, 6, and 5 for the validation sites. These results are consistent
with those from Figure 8 and suggest that there is a moderate improvement for the
exponential model fit between M1 and MO0, and a minor improvement between M2 and M1.

Theseresults indicate that model M2 provides the best representation of POT processes
across the region. To understand how well this model could perform with more
information, M2 is refit using all 39 sites (M2a1) and compared to the fit based only on the
calibration sites (MZregionalized). This comparison is shown in Figure 10. We note that it is
possible for M2egionatized to slightly outperform M2, at certain sites because partial pooling
influences parameters in both models. For the Poisson model, M2, performs substantially
better than M2 egionalizeda at most validation locations, with an average outperformance of
20%. For one site, the improvement reaches as high as 60%. Despite the large differences
in performance between M2, and M2 egionalized at validation sites, the estimated coefficients
for TME influence (B8;;'%) at those sites are extremely similar (Pearson r of 0.99). Rather,
the substantial outperformance of M2 reflects the spatial variability of the time-invariant
component of the Poisson model (uy;) and how poorly it regionalizes across sites in
M2:egionalized based on the PCs (recall Figure 7a-c). The additional spatial information in
M2.1 is responsible for the higher precision of the associated model coefficients.
Conversely, the time-invariant component of the exponential model is much less variable
across sites and relates well to all of the PCs, enabling reasonable estimates of p,; across
validation sites under M2 egionalized. This is reflected in the similar performance between
M2a1 and M2regionalized for the exponential fit, with an average outperformance of only 3% at
validation sites. We do note, however, that M2 shows a >20% improvement over
M2regionalized at two validation sites in the southwest of the domain. Overall, the results
suggest that regionalization of POT models across Northern California can be substantially
improved with a better understanding of how site-specific characteristics control the time-
invariant characteristics of the Poisson model.
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Figure 10. RPSS for the Poisson distribution fit (left) and CRPSS for the exponential model
fit (right) for M2 calibrated with all 39 sites (M2a1) and only the calibration sites
(M2regionatized)- The scores are shown and labeled for calibration (circles) and validation
(asterisks) sites. Positive scores (blue) favor M2a. The mean score across calibration and
validation sites is provided in the header.

4.4. Model error diagnostics

The ratio of posterior mean rank probability scores between M2 and M1 indicates that M2
underperforms M1 by the largest margin in 1981, 1985, 1993, 1999, 2000, and 2003 for the
Poisson model fit. For the exponential fit, M2 most underperforms M1 in 1983, 1987, 1990,
2003, 2005, and 2013. Of the poorest fits for the Poisson model, over-prediction only
occurs in 1981, while all other years are under-predicted. Similarly, for the exponential
model, M2 only over-predicts in 1983 and under-predicts in the remaining years.

Figure 11 shows anomaly composites of atmospheric circulation for extreme event days
during years of under-prediction for both the Poisson and exponential models. Similar
anomaly composites are also shown for the dates of major PE-related extreme
precipitation events. Atmospheric circulation is similar during extreme events in years
where the Poisson and exponential models of M2 most underperform M1. The circulation is
dominated by an anomalous low off of the northwestern coast of the United States, with a
longitudinally extended high to the south. The offshore cyclone drives moisture transport
over Northern California from the west and southwest. This pattern is in contrast with
circulation during the largest TME events, where the anomalous high to the south extends
further over the continental U.S., as does the trough. Moisture is funneled from farther
southwest over Hawaii directly to Northern California, forming a characteristic AR event.
Figure 11 clearly shows that the POT model conditioned only on TME events is vulnerable
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to underestimation when extremes are caused by midlatitude cyclones in the secondary
circulation. The model could likely be improved if an additional index was included to
represent the variability of frontal systems, although this analysis was not attempted here.

Figure 12 displays the distribution of daily AQ values for all TME tracks during years of
over-prediction (1981 and 1983), as well as other years containing TME-related extreme
events. Interesting, even though 1981 and 1983 have an annual TME index value similar to
that found in the other years, they both exhibit the smallest tail behavior of daily AQ values.
This suggests that in both 1981 and 1983, there were many days with less intense TME
tracks that in aggregate delivered substantial amounts of moisture to the region. We also
note that 1981 and 1983 have the smallest ratio of the annual TME index value to the
number of days with non-zero AQ values, supporting the hypothesis that both years were
influenced by relatively weak TME tracks. This result initially indicates that the model may
be improved for over-prediction by adjusting the annual TME index to only consider TME
tracks that meet a certain AQ threshold. However, early attempts at applying such a
threshold led to under-prediction in other years, so a robust correction is not immediately
evident. Further research is needed on this topic.
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Figure 11. Anomaly composites of 500 mb level vector winds and geopotential heights
during days with extreme rainfall in years with the worst Poisson model performance (top
panel), the worst exponential model performance (middle panel), and the largest TME
index (lower panel).
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Figure 12. The distribution of the logarithm of AQ during years in which the frequency of

rainfall extremes are over-predicted (1981 and 1983), as well other TME years. The TME
annual index value for each year is given in parentheses in the legend.

5. Conclusion

Nearly 30 years ago, Hirschboeck [1988] proposed a systematic characterization of
extreme floods based on the causal, climatological mechanisms that determine how storms
vary across the United States. Despite this early work, engineering hydrology and
insurance practices have tended to favor a statistical characterization of extreme events in
lieu of a physical interpretation of their root causes. While this approach can be both
simple and effective for planning purposes in a stationary world, the modern challenges of
climate change and rapid urbanization, along with revelations regarding decadal and
longer cycles in the climate system, lead us to question the adequacy of a strictly statistical
approach to extreme event frequency analysis.

This paper presented a regional hierarchical Bayesian model for non-stationary
precipitation extremes in Northern California that conditioned a POT model on the physical
atmospheric mechanisms known to govern regional flooding, namely TMEs from the
equatorial Pacific. The full Bayesian model outperformed other, simpler models that did
not leverage the information content of the TME index, particular with respect to the
frequency of extremes. Furthermore, the model was able to integrate TME-related
information with site-specific characteristics to improve the regionalization of the POT
model to ungaged locations. Still, the potential for substantial model improvement is large
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if the time-invariant component of the Poisson model could be better regionalized across
space.

A diagnostic analysis of years in which the hierarchical model most underperformed its
simpler counterpart suggested that the time-varying component of the model could be
most improved by including additional covariates that characterize other relevant flood-
generating climate mechanisms, such as frontal systems. Even without this information,
however, the inter-annual variability of the TME process was shown to cause substantial
year-to-year modulations in extreme event risk over the region. Alternative realizations of
the same TME process could lead to periods with long streaks of elevated extreme event
risk that have implications for regional flood management strategies.

Looking forward, the integration of statistical models of extremes with a physical
understanding of their causal mechanisms provides a viable way to link classical risk
estimation approaches for water resources planning and management with state-of-the-art
climate science and modeling. The regional model proposed in this work could be coupled
with long-term projections of TME frequency and magnitude under anthropogenic forcing
to provide a notable advance towards this end. Some recent work has focused on
projections of the Pineapple Express [Dettinger et al., 2011] and Gulf Stream [Lavers et al,,
2013] TME phenomena, but more research is needed to understand how credibly AOGCMs
reproduce these atmospheric features and how this information can be downscaled and
coupled with local observations for use in long-term planning. Correspondingly, the
development of an index related to frontal storms or extratropical cyclones may add
strength to the model developed here for this region.

We are pursuing extensions of such models to a multilevel structure where atmospheric
circulation indices derived from physical considerations as well as indices for tropical
ocean conditions can be used to predict the birth and evolution of TMEs, which in turn are
used to predict extreme regional precipitation and flooding. The motivation for building
such models is to provide a mechanism for the causal analysis of the processes and their
comparison across climate re-analysis models and climate models used for seasonal
forecasting and climate change projections. Such comparisons would allow a mechanistic
assessment of what aspects of the causal chain to extreme precipitation are well modeled
or deficient in the numerical integrations of the models.
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